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SUMMARY 

This paper describes one application of the approximate factorization technique to the solution of 
incompressible steady viscous flow problems in two dimensions. 

The velocity-pressure formulation of the Navier-Stokes equations written in curvilinear non-orthogonal 
co-ordinates is adopted. The continuity equation is replaced with one equation for the pressure by means of 
the artificial compressibility concept to obtain a system parabolic in time. The resulting equations are 
discretized in space with centred finite differences, and the steady state solution obtained by a time-marching 
AD1 method requiring to solve 3 x 3 block tridiagonal linear systems. 

An optimized fourth-order artificial dissipation is introduced to damp the numerical instabilities of the 
artificial compressibility equation and ensure convergence. 

The resulting solver is applied to the prediction of a wide variety of internal flows, including both 
streamlined boundaries and sharp corners, and fast convergence and good results obtained for all the 
configurations investigated. 
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INTRODUCTION 

In recent years, the approximate factorization, alternate direction implicit (ADI) technique 
developed by Beam and Warming’.’ has been extensively applied to the solution of the 
compressible Navier-Stokes  equation^.^ 

The approximate factorization technique presents important advantages with respect to the 
classical ADI, namely: the flexibility and reduced computational effort4 following from the choice 
of the ‘delta’ formulation; the closer coupling between the different equations of the system, with 
consequent improvement of the convergence rate, and the easier implementation of boundary 
conditions. These features make it very attractive also for the solution of the incompressible 
Navier-Stokes equations, and, indeed, one successful application, using the stream function- 
vorticity formulation, is reported by Nap~ l i t ano .~  

The present authors chose, instead, to investigate the use of this technique for the solution of the 
primitive variables formulation of the same equations, which is more suitable for eventual 
extensions to three-dimensional problems. 

The use of the artificial compressibility concept5 made it possible, for steady problems, to write 
the incompressible, laminar Navier-Stokes equations in a vector form suitable for solution with 
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the scheme under discussion. Centred finite difference approximations were adopted for all the 
spatial discretizations. 

Preliminary results were obtained on a rectangular mesh,6 but the final solver was developed in 
curvilinear non-orthogonal co-ordinates in order to achieve the maximum flexibility in dealing 
with irregular boundaries.' 

The resulting code was applied to a variety of flow problems,* including both streamlined and 
bluff obstructions. Satisfactory results were obtained for all the configurations investigated, 
indicating that a high degree of generality could indeed be achieved. High priority was given to 
computational efficiency and different options investigated in order to  minimize the CPU 
requirements. 

GENERATION OF CO-ORDINATE SYSTEM 

An excellent review of the different methods of generating curvilinear meshes was given by 
Thompson et al.' and the relative discussion will not be repeated here. The authors found that the 
procedure proposed by Thompson et a1.'09' provided satisfactory grids for all the geometries of 
interest and used it through all of the present work. 

A simply connected flow field in the physical plane x, y is therefore transformed in a rectangle in 
the mathematical plane [ ,v through the solution of the system of elliptic PDEs12 

V2C(x,y) = P(x,Y), V2v(x ,y )  = Q(x,y), (1) 

where P and Q are exponential weighting functions which allow one to concentrate mesh points in 
selected regions of the physical plane. 

Different examples of grids generated following the above approach will be shown in the 
following paragraphs. 

Formulation of the equations of motion 

The time-dependent, primitive variables (u,v,p) form of the incompressible Navier-Stokes 
equations is adimensionalized with respect to a velocity scale uo, length scale I ,  and twice dynamic 
pressure poug, and written in a general system of curvilinear non-orthogonal co-ordinates, 
maintaining the Cartesian velocity components u and v as dependent variables. 

Continuity 

In two dimensions the resulting system is: 

Conservation of momentum in the x direction 
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Table I. Metric terms 

Conservation of momentum in the y direction 

where Re is the Reynolds number of the flow. The detailed forms of the different coefficients are 
given in Table I. 

One equation for the pressure is obtained from the time-dependent form of the continuity 
equation, through the already mentioned artificial compressibility concept? a fictitious state 
equation, relating pressure to density, is defined as p = P E  (where E >  0 is the artificial 
compressibility parameter) and used to replace the density with the pressure, to give 

yc- + xc- - x,- = 0, -++- y - -  ""1 2 :( all all ay 
au au a v  

(5) 

where E is to be chosen to ensure the fastest convergence to steady state. E N  1 was found to be the 
optimal value for the present application. 

Replacing equation (2) with (5), the entire system can be cast in a time-dependent form, but 
obviously, will be valid only at steady state, where @/at = 0. The steady state will be attained as the 
limit of a time-marching process. 

For steady flow problems, the use of the artificial compressibility formulation, besides providing 
a form suitable for the application of the approximate factorization scheme, is, in the experience of 
the present authors, preferable to the solution of the Poisson equation for the pressure, because it 
explicitly enforces mass conservation and does not require internal iterations for each step in the 
fictitious time. 

The system including equations (3)-(5) can now be written in compact form: 

9 (6) 

where U is the unknown vector, U, and U, are its derivatives along the respective co-ordinate axes, 
F and G are the vectors containing the convective terms and V,, V,, W,  and W, are the vectors 
containing the diffusive terms. 

The system is closed with a set of boundary conditions. For the internal flows treated here, these 
are (Figure 1): 

au aG a v , ( u , u , )  dV,(U,U,) + a w , ( u , u , )  + dW,(U,U,) 
ar all av 

-+-+-= + 
at ay all a i  
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Figure 1. Standard boundary conditions for the internal flow problems 

Non-slip on solid walls 

where n is the direction normal to the boundary; 

Equilibrium.flow at the inlet 

azplax2 = 0, = u(y), = 0, 

with an imposed velocity distribution; 

Parallel flow at the outlet 

p = 0, au/ax = 0, avlax = 0. (9) 

SOLUTION SCHEME 

The system (6) is solved with a time-marching procedure, where the solutions at two consecutive 
time steps, n and n + 1 ,  are related as 

where f 6 8 6 1 weights the explicit and implicit contribution to the space operator. In the present 
work I3 was kept equal to 1 in order to achieve faster convergence to steady state. 

Vectors F, G, V, and W, must be conveniently linearized in order to be able to solve (10). E 
represents a fully explicit term including the vectors V, and W,, which cannot be fitted in a 
tridiagonal scheme because they contain cross-derivatives. The linearization can be performed 
without loss of temporal accuracy in the form 

= F" + A"(U"+ - U"), (1 1) 
p+ 1 
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where 

R, = (aR/ac), Q = (aw, /au) ,  s = (aw,/au,);  s, = (as/ay). 

Putting (1 1)-(14) into (10) and adopting the operator of forward differencing in time A U  ('delta' 
form), 

U", (15) AUn+ 1 = Un+ 1 - 

the following system in the unknown A U  is obtained: 

where I is the identity matrix and RHS stands for right-hand side. 

loss of accuracy in time, through the approximate factorization 
The original two-dimensional problem is split into two one-dimensional problems, without any 

[I + $At( %-%)I[ I + $At( - $)]AU" = RHS. 

The introduction of an intermediate unknown AU*, defined as 

A U  *-[ - I + B A t  ( y  ;y:)]Au. 

makes it possible to implement an alternating direction sequence, solving first (1 7) in the unknown 
AU* and then (18) in the unknown AU; each of the two steps requires only the solution of a block- 
tridiagonal system. The steady state is reached as the limit of the time-marching procedure. 

Among the advantages offered by the approximate factorization with respect to the classical AD1 
methods, first proposed by Peaceman and Rachford,I3 is the fact all the intermediate steps are 
consistent with the original PDEs (3)-(9, so that the boundary conditions for A U *  and A U  are 
exactly the same as for U and their implementation is immediate. 

In order to simplify the numerical treatment, the boundary conditions are imposed explicitly. 
System (17) is solved for time step n + 1 with AU* = A U  = 0 at the boundaries and the boundary 
values updated afterwards using the new values for the inner field. Such a choice was found to have 
no adverse effect on the stability of the solution. 

DISCRETIZATION 

Grid layout for  the dependent variables 

System (18) is discretized over a non-staggered mesh. Such a choice is motivated by the difficulty 
of generating properly a staggered mesh in curvilinear co-ordinates and, above all, by the need to 
obtain a system of discrete equations easy to fit in a tridiagonal scheme. 

It is well known (and a very clear presentation of the whole problem can be found in Reference 7), 
that numerical problems can be expected when a non-staggered mesh is used for the discretization 
of the Navier-Stokes equations in the primitive variables formulation. This follows from the fact 
that the pressure at point i, j does not explicitly appear in the calculation of the velocity 
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components at i , j  and there is therefore no direct coupling between the computed pressures at 
adjacent nodes (only a weak coupling is provided by the boundary conditions). Consequently, 
pressures at odd and even points can converge to two different solutions, resulting in the typical 
‘chessboard’ pattern. Such behaviour does not necessarily prevent the attainment of a fully 
converged solution for the velocity, but results in wiggles on the pressure. The present authors 
performed a careful numerical study of the extent of such a problem and, above all, of the role of the 
boundary conditions. It was found14 that solutions practically free of wiggles could be found, for 
all the problems investigated, by discretizing equations (7)-(9) with second-order, one-sided finite 
differences. 

Discrete equations 

All the space derivatives that appear in equations (3)-(5) are discretized with centred, second- 
order-accurate finite differences. 

In order to prevent the well-known problems related to the centred discretization of the 
advection terms, the guidelines suggested by Gresho and Lee’5 were followed, and the grid 
spacings controlled to achieve mesh Reynolds number smaller than 2 in all the regions where strong 
gradients are expected. Stable and wiggle-free solutions were obtained without the need to 
introduce damping terms in the momentum equations. 

On the contrary, the introduction of artificial damping was found necessary to ensure 
convergence of the artificial compressibility equation. Equation (5) is fundamentally an explicit 
relationship for the pressure which does not include any physical diffusive or dissipative term and 
is, therefore, sensitive to numerical perturbations. This problem does not appear when the artificial 
compressibility is coupled to an explicit solver (as in the original work by Chorin5) or when it is 
used as a ‘corrector’ step after the solution of the momentum equations, but it is fundamental for 
the present approach, where an implicit coupled solver is to be used. 

In fact, with the present discretization,’,2 the numerical modes with the highest wave numbers 
are entirely undamped and may easily lead to instabilities. Such a behaviour was observed for any 
flow geometry more complex than a straight channel and led to the decision to add an artificial 
dissipation term to equation (5).  

Beam and Warming ‘3’  propose to increase the stability of the approximate factorization 
technique by adding to the basic equations fourth-order artificial dissipation terms in the form of 
fourth-order derivatives of the basic unknowns. In vectorial form the final system becomes: 

au aF ac av, av, awl aw, ~pa4u ~ ~ 4 a 4 u  sz, - ____ -Rq, (19) at  a5 aq v5 a[ ay ay 8 a54 8 ay4 
- + - + - = ~ + ~ + ~ +---- 

where the additional terms can be weighted according to the constants $2, and 0,. 
The terms so introduced will be O(Ai4) or O(Ay4), while the physical terms are discretized to 

O(A5’) or O(Au2): in this way the formal accuracy of the method is not disrupted. These terms are 
treated in a fully explicit way in order to maintain the tridiagonality of the block matrix to be 
inverted. Therefore, there will be an explicit limit for the maximum allowed values of R, and 0,. 

On the basis of a linear stability analysis of model equations3 for an unbounded domain, the limit 
R, < 1, R, < 1 is proposed.’ 

However, the present authors found that better results in terms of mass conservation and 
convergence speed could be obtained, especially for geometries including sharp corners, by 
introducing non-uniform weights and so confining the influence of the dissipative terms to the 
high-gradient regions where the strongest instabilities are likely to occur. Two new weighting 
functions R, ( i , j )  and R,(i,j) are introduced to weight individually the artificial dissipation terms at 
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each mesh point i,j ,  

while the above-mentioned stability criterion becomes Q(( i , j )  < 1, Q v ( i ,  j )  < 1. 
The weights introduced by (20) are directly proportional to the change of the physical quantity 

and inversely proportional to the grid spacing, so that artificial dissipation is introduced only in 
high-gradient regions. In Figure 2 a comparison between the normal 'constant weight mode' and 

(b) 
Figure 2. Weights distribution for the artificial dissipation term: backward facing step-case 2 computational domain; 

constant weight; ~ variable weight. (a) [-direction weight for pressure; (b) q-direction weight for pressure 
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the new proposed ‘variable weight mode’ is shown for the backward-facing step problem of 
Reference 16, case 2. 

In the figure the computational domain in the [ and v] axes is plotted on the horizontal plane 
and the vertical axis represents the applied weight for the fourth-order terms. For the case 
considered, the weight ranges from 0.01 in smooth flow regions to 0 8  close to the separation 
point; in the constant weight mode the weight factor would remain equal to 0 8  everywhere 
in the domain. It is therefore possible to introduce locally a strong damping, while maintaining a 
weak one in smooth flow regions. 

This formulation was applied to obtain the results to be discussed in the next section. 

Time step choice 

The formulation adopted for the present work is fully implicit and, therefore, unconditionally 
stable at least for linear problems with periodic boundary conditions.’ As the steady state is the 
only result sought, accuracy in time is not a problem and it is possible to work with the time step or, 
to be more precise, with the CFL (Courant-Friedrich-Levy) number yielding fastest conver- 
gence. It has to be remarked that the largest CFL compatible with the practical problems of non- 
linear instability of the Navier-Stokes equations is not necessarily the optimal one for convergence 
to the steady state solution,” so that a careful optimization is required. 

For the present work, the following definition is taken for the CFL18 (in terms of the 
adimensional variables): 

At 
CFL = 

A512 + Av]P ’ 
1u1+ JE + 2/Rec (vI + JE + 2/Re,, 

where At is the time step and Rei and Re,, are the Reynolds numbers based upon the local mesh 
spacing. 

For a non-uniform flow and even more for a non-uniform and highly distorted mesh, the local 
CFLs for a fixed At change considerably; therefore, if a reasonable upper limit on the CFL is to be 
respected in the high-gradient regions, the CFLs in smooth flow regions are likely to be very small 
and, in fact, full advantage of the implicit formulation is not taken. 

Therefore, for steady state problems, it is more attractive to vary the time step from mesh point to 
mesh point 3-18 to keep the CFL approximately constant all over the mesh and to ensure a more 
uniform convergence rate. 

A variable-time-steplconstant-CFL formulation could be obtained by solving equation (21) for 
the unknown At; alternatively, a simpler and computationally less expensive formulation, leading 
to an approximately constant CFL, is proposed in Reference 3: 

where Atref is a reference time step. 
Both formulations were tested, and the best overall results obtained with (22). Comparison of 

convergence histories for ‘standard’ approximate factorization solutions, with both artificial 
dissipation coefficients and time step constant in space, and the present one, including 
equations (20) and (22), did show, typically, a decrease in size of the residual by about two 
orders of magnitude for a fixed number of iteratiom8 Moreover, with the optimized formulation, 
the residual could easily be brought down to machine accuracy. 
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APPLICATIONS 

As already anticipated, the goal of the present work is to develop a solver able to deal with a wide 
variety of flow problems. Therefore, a large number of tests were performed for geometries 
including both streamlined boundaries and sharp corners,’ and the most representative results will 
now be discussed. All the calculations were performed on a VAX 780-11 computer. 

Diverging channels 

defined by the law 
The first case investigated was the diverging channel shown in Figure 3, whose wall geometry is 

ywa,, = [tanh(2 - 30x/Re)  - tanh(2)]/2, 

which has been proposed as a benchmark case by Napolitano and Orlandi. 
As required by the benchmark, the problem was studied for Reynolds numbers (based on the 

maximum inlet velocity and on the inlet width) of 10 and 100, for the boundary conditions shown in 
Figure 3, and a mesh of 21 x 21 points. 

for the pressure was 
obtained in about 300 iterations for a CPU time of 13 min; mass flow rate along the channel was 
conserved with an error of about 1%, which is mostly due to the fact that mass conservation is not 
explicitly imposed on the solid boundaries. l4 

In both cases, the existence of a small separated region is predicted by the present solver. The 
inlet velocity profile is shown in Figure 4, together with calculated velocity profiles for the 
separated region and the following reattachment. 

One of the quantities proposed for the benchmark, namely the pressure on the lower wall, is 
presented in Figure 5 for the case Re = 10 and in Figure 6 for the case Re = 100, together with 
numerical results from Reference 19. The present results fall well within the spread of the other ones 
available and satisfactorily close to the ones obtained by Cliffe et al., which are considered to be the 
best ones available by the authors of the benchmark.” The discrepancy in the pressure values near 
the outlet section, which can be observed in Figure 6, is due to the adoption of the boundary 
condition d p l d y  = 0 instead of the fixed pressure demanded by the benchmark; the change did 
result in a smoother solution in the outlet region. 

For both configurations, convergence to a maximum local residual of 

Channels with curved walls 

A second test for internal flows with streamlined boundaries was performed by investigating the 
family of curved channels proposed by Ghia et ~1.’’ as a test of the ability of incompressible 
Navier-Stokes solvers to detect recirculation in complex geometries. 

Figure 3. Geometry and boundary conditions for the diverging channel problem 
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Figure 4. Velocity profiles in the separation region for the case Re = 10 
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Figure 5. Comparison of predicted l 9  pressure distributions on the wall for the case Re = 10 

The wall shapes are defined by the equations 

yo = (a' - Az)/A, 

x2 + y2 - a2 

x 2 + v 2  
- y o  = 0 for the lower wall, 1 for the upper wall. 

The curvatures are defined by the set of parameters a' and A; the values corresponding to the 
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Table 11. Curved channel-parameters set 

Case 1 2 3 4 

a’ 0.210 0.585 0.644 0.725 
A 0.782 0.678 0.643 0.606 

cases investigated are reported in Table 11. The shape of the resulting channel, together with a 
typical mesh, can be seen in Figure 7. 

All the calculations were performed for a Reynolds number (based on the inlet width and the 
maximum inlet velocity) equal to 100 and the boundary conditions defined in the previous section. 
Two meshes were tested: a coarse one made by 40 x 20 points and a refined one of 61 x 21 points. 

residual error was obtained in less than 600 
iterations for all four cases, corresponding to a CPU time of about 60 min, while the mass error 
remained around 1%. 

Predicted velocity profiles for case 4 are shown in Figure 8, starting from the symmetry axis: the 
separated region and following reattachment are well in evidence. 

The overall results are quite close to the one presented in Reference 20 for the same number of 
mesh points, as can be seen from the comparison between predicted recirculation lengths in 
Table 111. 

The only significant discrepancy is that the present solver does not predict separation for case 1; 
the flow is, however, very close to separation, as can be seen by comparing the predicted values of 
the ‘pressure parameter’ obtained by subtracting from the computed wall pressure the correspond- 
ing value for a straight channel. The results for cases 1 and 4 are shown in Figures 9 and 10 and the 
general agreement appears acceptable. 

It can therefore be concluded that the present solver predicts correctly and efficiently most 
separated flows in channels with streamlined walls, and the scope of the investigation can be 
extended to the solution of problems including separation on sharp corners. 

For the refined mesh, convergence down to 
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Table 111. Curved channel separation and reattachment points in wall 
co-ordinates (estimated from plotted streamlines for values from 

Reference 20) 

Case Separation point Reattachment point 
Present Ref. 20 Present Ref. 20 

- ~ 1 0.7 1.32 
2 0.95 0.87 1.95 2.0 
3 0.55 0.46 2.10 2.16 
4 0.46 0.43 2.30 2.42 

I I I I 1 1 1 1 1 

0 UPPER WALL 
A LOWER WALL 

-8 .0 -6 .4  - 4 . 8  - 3 . 2  -1.6 0.0 1.6 3 . 2  4.8 6 . 4  8.0  
X - A X I S  ( W A L L  I 

Figure 9. Comparison of predicted'" pressure parameters: case 1 



1396 

0.5 

0 

[L W 

c 

Q: 
[L 

2 -0.5 

d 
-1.0 

3 
w 
v) 
w 
[L 
a -1.5 

-2.0 

V. MICHELASSI AND C. BENOCCI 

I I I I I 1 I I I 

P R E S E N T  
GHlA 

0 UPPER WALL 
A LOWER WALL 

- 
.-.- 

-8.0 - 6 . 4  - 4 . 8  - 3 . 2  -1.6 0.0 1.6 3.2 4.8 6.4 8.0 
X - A X I S  ( W A L L  1 

Figure 10. Comparison of predicted” pressure paramctcrs: case 4 

Back \ccrr.d- firt ing s teps  

In view of the large amount of available literature and its interest from the numerical point of 
view, the problem of flow over a backward-facing step was selected as the fundamental test case to 
assess the performances of the solver for geometries including sharp corners. 

The cases studied are the ones proposed for a GAMM workshop16 for which both experimental 
and numerical results are available for comparison. 

The four test cases cover two inlet/outlet ratios- namely k / H  = 0.333 and h/H = 0.5, whereh is 
the height of the step and H that of the channel outlet section-and two values of the Reynolds 
number (based on the maximum inlet velocity and inlet width), Re = 50 and Re = 150. 

The geometry of the problem, together with a typical mesh, is presented in Figure 11. Three 
different meshes, made respectively of 51 x 21,61 x 25 and 70 x 39 points, were tested; while the 
coarsest mesh already gave results comparable to the ones presented in Reference 16, a significant 
improvement in the prediction of some critical parameters (see Table IV below), as well an 
important decrease in mass error, was found with the most refined mesh. 

For the coarsest mesh, full convergence down to 10-’-1Op8 residuals was reached in less than 
1000 iterations, with a mass error of the order of 1.3%, for the more refined mesh, between 2400 and 
3000 iterations were required to achieve a comparable convergence level and the mass error 
reduced to around 0.4%. The corresponding CPU time ranged between 100 and 600 min. 

The cases treated are summarised in Table IV, together with the predicted values of two 
benchmark quantities, namely the reattachment length and the minimum value of the stream 
function in the centre of the recirculation bubble; the experimental values and the spread of the 
other available numerical results reported in Reference 16 are also given comparison. Good 
agreement can be observed, with the present values falling well within the spread of the numerical 
results and satisfactorily close to the experimental ones. Two different values are presented for the 
‘experimental’ stream function, as reported in two different analysis of the experimental results; 
the present authors consider that this discrepancy can give the reader a fair idea of the uncertainty 
level attached to the present comparison and its interpretation. 

An example of predicted velocity profiles (case 3) is presented in Figure 12, showing results for 
the separation bubble and the following reattachment region; the agreement with the experimental 
data appears satisfactory. 
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Figure 1 I .  Typical geometry and mesh for the backward-facing step problem. Mesh points = 61 x 25; Re = 50 
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Table IV. Analysis of laminar flow over a backward-facing step: a GAMM wcrkshop 

Case Re hJH Reattachment length* 
Present Num.16 Exp.16 

Stream function 
Present Exp.16 

1 50 1/3 2 . 6 ~  1.56-3.1 3 
2.8 r 

2.3 r 

6.0 r 

4.5 r 

2 50 112 2.0 c 1.56-2.75 ~ 

3 150 1/3 5.6 c 4.69-7.25 6 

4 150 112 4 . 4 ~  3.7-5.8 4.5 

0.018 c 0.012-0.018 
0.01 7 r 
0.033 c 
0.030 r 

0.020 r 

0.060 r 

- 

0.025 c 0.01 6-0.024 

0.063 c 0.057-0.086 

* Adimensionalized by step height. c. coarse mesh. r. refined mesh. 

Figure 12. Velocity profiles in the separation and reattachment region: case 3 

Figures 13-1 5 present a comparison between predicted and measured shear stresses on the 
lower wall for the three cases where experimental data are available. The agreement appears good, 
with the partial exception of case 4 (Figure 15) where the prediction does not show the wall 
shear stress overshoot following reattachment; this tendency is shared with most of the other 
numerical solutions presented in Reference 16. An overshoot in wall shear stress is predicted 
by the present solver only at higher values of the Reynolds number.6 

Steps of rectangular cross-section 

In order to complete the present analysis, the flow around an obstacle of rectangular cross- 
section was also considered. Three different geometries, reported in Table V as cases 1, 2 and 3, 
were studied: they cover a variety of aspect ratios ( k /H  and k/l, where k is the height of the obstacle, 1 
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Figure 13. Comparison of predicted and measured" wall shear stress on the lower wall: case 1 
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U! 
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W A L L - C 0 0 R D I N A T E 
Figure 15. Comparison of predicted and mcasured" wall shear stress on the lower wall: case 4 

Table V. Analysis of laminar flow over a step 

Case Re hlH hll Reattachment length* Streamfunction 

Present Liter. Present Liter. 

1 144 0.5 2.5 6.2 7.52' 0.115 - 

2 144 0.5 0.25 6.1 7.0' ' 0.070 - 

3 85 0.4 1.0 3.5 3.622 0.035 0.02822 

* Adimensionalized by step height 

For all three cases, a mesh mode of 70 x 25 points was adopted. The grid for case 2 is shown as an 
example in Figure 16. 

Convergence was found to be very slow, especially because of the very high flow gradients 
around the upstream concave corner: 2000 iterations, corresponding to 280 min of CPU times were 
needed to bring case 1 to a 10-3residual and 5% mass error; the same number of iterations did 
bring to full convergence with a residual and 3% mass error for case 2 and to a comparable 
residual and 2x, mass error for case 3 .  These results clearly show that case 1 represents the limit of 
the geometries which can be treated successfully with the present mesh generator. 

It has to be remarked that it was impossible to detect the small recirculation bubble upstream of 
the obstacle, because its size is of the same order as the mesh resolution which could be achieved. 
(The bubble was found in calculations employing the same scheme, but for a 75 x 51 Cartesian 
mesh, by one of the present authors.6) 

The comparison between the results of the present solver and the aforementioned references for 
the value of the reattachment length downstream of the obstacle and, where possible, for the stream 
function at the centre of the recirculation bubble is presented in Table V. 

The agreement is markedly worse than the previous cases, but still acceptable in view, above all, 
of the uncertainty in the experimental results. 
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Figure 16. Typical geometry and mesh for obstruction of rectangular cross-section: case 2. Mesh points = 70 x 25; 
Re = 144 
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experiment present 
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. 00 

Figure 17. Velocity profiles in the separation and reattachment region 

Velocity profiles for case 2 are shown in Figure 17: velocity profiles above the obstacle and in the 
recirculation region are compared with the experimental ones, and the agreement appears 
satisfactory. 

CONCLUSIONS 

A general implicit solver for the laminar, incompressible, steady state Navier-Stokes equations 
was developed. The approximate factorization method proposed by Beam and Warming, together 
with the artificial compressibility formulation and the adoption of curvilinear non-orthogonal co- 
ordinates, proved itself an efficient way of solving a wide range of internal flow problems. 

Introduction of an optimized fourth-order numerical dissipation and a variable time step 
allowed acceptable results to be achieved even for every complex configurations and brought a 
significant increase in the speed of convergence. 

The only significant discrepancy with the results used as a benchmark was found for channel 1 of 
Reference 20, where no separation is predicted by the present solver. In the opinion of the authors, 
the disagreement is due to the lower accuracy of the boundary condition adopted in the present 
work for the pressure and indicates a need for improvement in this area. 

The limitations connected to the use of a general co-ordinate generator clearly emerge when 
geometries including sharp corners are considered: for the flow around a step of rectangular cross- 
section, the results appear worse than the ones obtained by one of the present authors with a 
comparable computational effort over a Cartesian mesh. However, it is the opinion of the authors 
that the decrease in performance remains an acceptable price to pay for the generality of the code. 
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